
Combined Population PK Modeling and Disproportionality Analyses to Assess the Association between Kinase Inhibition and Adverse Reactions
Jin-Zhong Liu, Ph.D. Division of Clinical Pharmacology, Indiana University School of Medicine

117th ASCPT, March 8, 2016, San Diego, CA

Kinase Inhibitors

Background

Adverse Reactions of KIs

Background

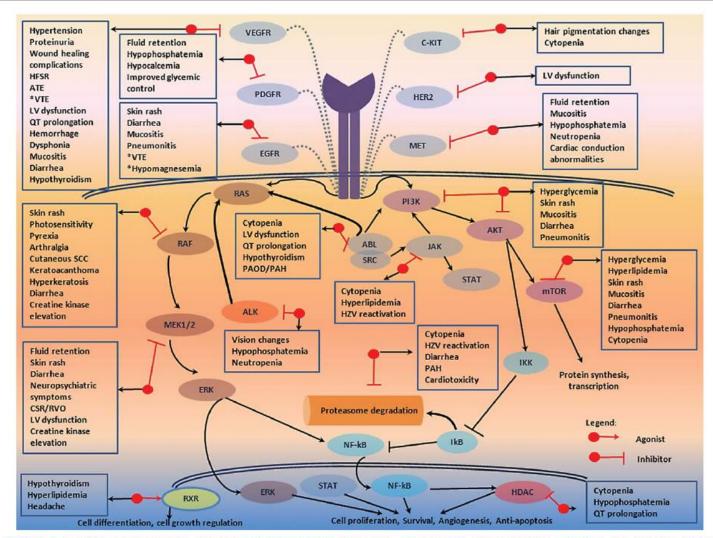


FIGURE 1. Toxicities Associated With Signal Transduction Inhibitors.*Associated predominantly with monoclonal antibodies. ATE indicates arterial thromboembolism; CSR, central serous retinopathy, HZV, herpes zoster virus; LV, left ventricular; PAH, pulmonary arterial hypertension; PAOD, progressive arterial occlusive disease; RVO, retinal vein occlusion; SCC, squamous cell cancer; VTE, venous thromboembolism.

Aim and Methods Outline

Aim and methods

Aim: to assess the association between kinase inhibition and adverse reactions

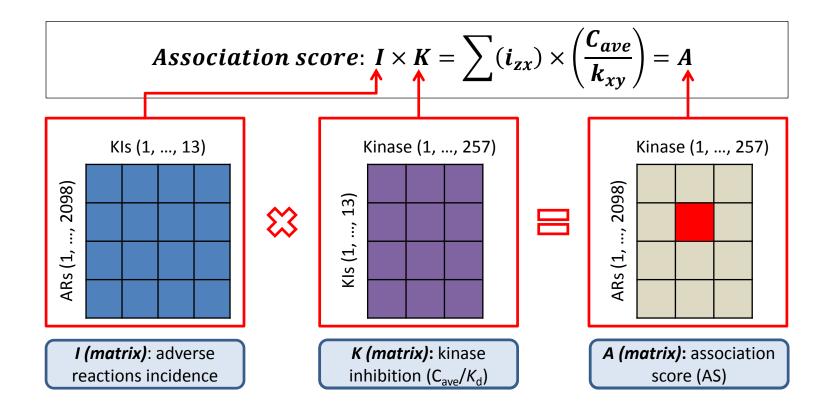
A (drug exposure, PK)

- Collect pharmacokinetic
 (PK) data of FDA-approved KIs
- 2. Conduct population PK modeling to calculate C_{ave} (average plasma concentration) at steady state

B (*in vitro* kinase inhibitory activity)

- 1. Literature search to collect constant dissociation (K_d) data
- Literature search to collect inhibitory percent
 (%) data

C (incidence of adverse reactions)


- 1. Collect safety data of FDAapproved KIs
- 2. Standardize ontology of adverse reactions (ARs)
- 3. Calculate incidence of ARs

D (association score)

An association score matrix of 2098 ARs (preferred terms) and 257 kinases

Association Score Matrix

Methods

Limitation

A false positive may be included when a high association score was obtained with a high AR incidence but moderate kinase inhibition.

Solution

After identifying AR associated $\underline{\text{KIs}}$, only keep the preliminary identified kinases (by association score) which can be inhibited with > 95% activity by any identified $\underline{\text{KIs}}$.

Data from 17 Kinase Inhibitors

Results

- Incidence of adverse reactions (ARs)
- 2. Inhibitory percent (%) data against 283 kinases

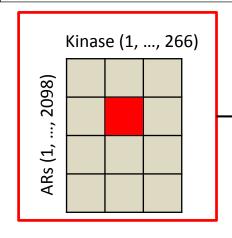
Reference for inhibitory percent data: <u>Uitdehaag JC et al. PLoS One. 2014</u> Mar; 9(3): e92146

Kinase Inhibitors (KIs) Axitinib (Inlyta) 1 Pazopanib (Votrient) 2 3 Sorafenib (Nexavar) Vandetanib (Caprelsa) 4 5 Crizotinib (Xalkori) **Erlotinib** (Tarceva) 6 Gefitinib (Iressa) 7 8 Lapatinib (Tykerb) **Bosutinib** (Bosulif) 9 10 **Dasatinib** (Sprycel) 11 Imatinib (Gleevec) 12 Nilotinib (Tasigna) **Sunitinib** (Sutent) 13 14 Cabozantinib (Cometrig) Ponatinib (Iclusig) 15 Regorafenib (Stivarga) 16 **17** Afatinib (Gilotrif)

13 KIs

- Pharmacokinetic (PK) data
- Dissociation constant (K_d) data against 257 kinases

Reference for K_d data:


<u>Davis MI et al. Nat Biotechnol. 2011</u>

Oct; 29(11): 1046-51

Karaman MW et al. Nat Biotechnol. 2008 Jan; 26(1): 127-32

An Example

To identify kinases associated with hypertension

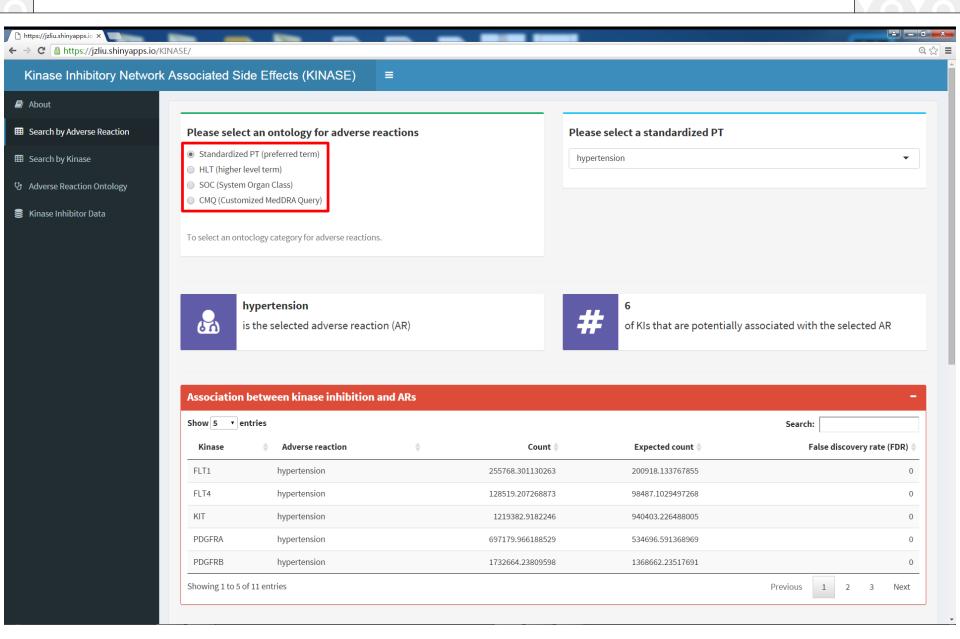
Preliminary identified kinases leading to hypertension: VEGFR1, VEGFR2, VEGFR3, KIT, PDGFR α , PDGFR β , TTK, ... (27 kinases in total)

| Identify hypertension associated KIs: pazopanib, axitinib, regorafenib, sorafenib, vandetanib, cabozantinib (6 KIs in total)

VEGFR2 FLT1 6 FLT4 6 **PDGFRA** 6 **PDGFRB** 5 FGFR2 5 **KIT** FGFR3 3 FGFR1 2 RAF1 2 **AURKC** 1

Only keep preliminary identified kinases which can be inhibited with > 95% activity by any identified 6 KIs.

4279 associations involving 534 ARs (preferred terms) and 140 kinases were identified.


Well-established pairs of kinase inhibition and ARs were confirmed:

```
hypertension – VEGFR2;
rash – EGFR/HER4;
conjunctivitis – EGFR;
fluid retention;
diarrhea – EGFR;
pulmonary hypertension – ABL;
QT prolongation – VEGFR;
proteinuria – VEGFR.
```

Visualize the results using a web app: https://jzliu.shinyapps.io/KINASE

KINASE: A Web App to Query the Results

Results

Acknowledgement

DOPI/OHOP/OND/CDER

- **Geoffrey Kim**, M.D.
- James Xu, M.D.
- Amy McKee, M.D.

DQMM/ORS/OGD/CDER

- **Liang Zhao**, Ph.D.
- Meng Hu, Ph.D.

DHOT/OHOP/OND/CDER

• Todd Palmby, Ph.D.

DHP/OHOP/OND/CDER

• Angelo DeClaro, M.D.

DPM/OCP/OTS/CDER

• Luning Zhuang, Ph.D.

IU School of Medicine

David Flockhart, M.D., Ph.D.